
CS 302: Introduction to Programming 
in Java 

Lecture 15 



Class 

Instances of the class 
(objects) – only valid at 
runtime 



Private Instance Methods 

● Instance methods usually public – why? 

● If we have an internal function that we do not 
want others to be able to call, make it private 

● Ex. a sort method on a phonebook object 

● Phonebook could have public methods to 
add and remove people from the phonebook 
but should keep itself sorted no matter what 

● Both the add() and remove() instance 
methods could call a private sort() method 



Accessing Instance Variables 

● Global scope within the class – why? 

● this.varName ALWAYS refers to the instance 

variable 

● varName will refer to the instance variable if 

the varName is unique 



Accessing Instance Variables Example 

public class BankAccount 

{ 

  private int balance; 

  public BankAccount(int balance) 

  { 

   //what goes here? 

  } 

} 



Constructors 

● Form: public <ClassName> (<param list>) 

● Can have multiple constructors as long as 

they take in different parameters 

● The appropriate constructor will be called 

based on what arguments are passed in 

● Method Overloading: having multiple 

methods with the same name that take in 

different arguments 



Practice 1 
● Create the class for a Motorcycle Object 

● Motorcycles have: 

● Color 

● Current Speed 

● Number of Gears 

● Motorcycles can: 

● Accelerate 

● Decelerate 



Practice 2 
● Create the class for a Chess Piece: 

● Chess Pieces have: 

● Color 

● Type (pawn, rook, knight, bishop, queen, king) 

● A grid location (a1 – h8) 

● Status (live or dead) 

● Chess Pieces can: 

● Move to a new location 

● Die 



Aggregation 

● "has a" relationship 

● Objects of one class contain objects of 
another class 

● Ex. 

● class Phonebook aggregates the class 
Contacts 

● class Wizard aggregates the class Wand 

● Mission aggregates Commodity, Location, 
and String 



Object References 

● All object variables are reference variables 

● Variable stores the memory location of the 
object, NOT the object itself (think arrays) 

● 2 or more object variables can point to the same 
object 

● Ex: BankAccount dansAccount = suesAccount; 

● Now modifying 1 will modify both 

● Different from: int x = y; modifying x will not 
change y 



Special Instance Methods: toString() 
● toString() 

● If I have an object variable and print it out, what 
happens? 

● To fix this, create a toString() method that returns a 
String – this will automatically be called if you try to 
print out your object (System.out.println(varName)) 

● Each object will have its own unique String 
representation (up to you) 

● Ex. A BankAccount might return a String with the 
balance, the account number, and the date it was 
created 

● Method header: public String toString() - no params 



Special Instance Methods: equals() 
● If I have two objects and compare them using 

==, what is being compared? 

● equals(Object o) is another method 
commonly implemented to fix this 

● Code that goes inside will be unique for all 
objects 

● Ex. for a phonebook, the .equals() method 
might return true if one phonebook has all the 
same contacts as another 

● Header: public boolean equals(Object o) 



Review – Writing Object Classes 
● Object classes have 3 parts: Instance data, Constructor(s), and Instance 

methods 

● Instance Data: 

– Should be declared private and represents the internal data that the object will work with 

– Instance data can be other objects (ex. a quiz could be comprised of question objects) 

– this.variableName will always refer to the instance data for the particular object 

● Constructors 

– Used to create a new instance of this object type 

– Can have multiple as long as they have different parametes 

– Written as: public ObjectName(<params>) 

– Purpose: initialize instance data 

● Instance Methods: 

– Define the way to interact with an object of this type 

– Can be public or private 

– 2 types: Accessors and Mutators 



Practice 1 

● Create a Contact class 

● Contacts have: 

● Name 

● Phonenumber 

● (Address) 

● Contacts have accessors and mutators for all 

their instance data 



Practice 2 

● Create a Phonebook class 

● Phonebooks have: 

● An ArrayList of Contacts 

● Phonebooks can: 

● Add/remove contacts 

● Look up the phonenumber of a contact 

● Change the name / phonenumber of a contact 

● Print all contacts names and numbers in 
alphabetical order 


